
MATH2050C Selected Solution to Assignment 7

Section 3.7 no. 3ac, 7, 10, 11, 12, 15, 16;

Section 4.1 no. 7, 8, 9bd, 10b, 11b, 12bd, 15;

Section 4.2 no. 1bc, 2bd.

Section 3.7

(11). Yes,
∑

a2n is convergent when
∑

an is convergent where an ≥ 0. For, when the latter series
is convergent, it implies in particular that {an} is bounded. We can find some M such that
0 ≤ an < M. For ε > 0, there exists some n0 such that

∑n
k=m+1 an < ε/M for all n,m ≥ n0.

But then
n∑

k=m+1

a2k ≤ M
n∑

k=m+1

ak < M
ε

M
= ε ,

so
∑

a2n is convergent by Cauchy Convergence Criterion.

(12). No. It suffices to consider
∑

1/n2.

(15). Use induction to show

1

2
(a(1) + 2a(2) + · · ·+ 2na(2n)) ≤ s(2n) ≤ (a(1) + 2a(2) + · · ·+ 2n−1a(2n−1)) + a(2n) ,

where an > 0 is decreasing. We work out the right inequality and leave the left one to you.
When n = 1, the right inequality becomes

a(1) + a(2) ≤ a(1) + a(2),

which is trivial. Assume it is true for n and we establish it for n + 1. Indeed, by induction
hypothesis and the fact that {an} is decreasing,

s(2n+1) = a(1) + a(2) + · · ·+ a(2n) + a(2n + 1) + · · ·+ a(2n+1)

= s(2n) + a(2n + 1) + · · ·+ a(2n+1)

≤
(
a(1) + · · ·+ 2n−1a(2n−1) + a(2n)

)
+ a(2n + 1) + · · ·+ a(2n+1)

= a(1) + · · ·+ 2n−1a(2n−1) +
(
a(2n) + a(2n + 1) + · · ·+ a(2n+1 − 1)

)
+ a(2n+1)

≤ a(1) + · · ·+ 2n−1a(2n−1) + 2na(2n) + a(2n+1) ,

done.

(16). We look at
∑∞

n=1 2
na(2n) =

∑∞
n=1 2

n/2np =
∑∞

n=1 2
(1−p)n, which is convergent if and only

if p > 1. We conclude that the p-series is convergent if and only if p > 1.

Section 4.1

(9d). We use ε-δ definition. Consider∣∣∣∣x2 − x+ 1

x+ 1
− 1

2

∣∣∣∣ = ∣∣∣∣2x2 − 3x+ 1

2(x+ 1)

∣∣∣∣ = ∣∣∣∣2x− 1

x+ 1

∣∣∣∣ |x− 1|.

We make a first choice δ1 = 1/2. Then for |x − 1| < 1/2, that is, 1/2 < x < 3/2. Then
|2x− 1|/|x+ 1| ≤ 4/3. Therefore, for δ = min{δ1, 3ε/4}, we have∣∣∣∣ x2 − x+ 1

(x+ 1)− 1/2

∣∣∣∣ < 4

3
|x− 1| < ε ,
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for x, 0 < |x− 1| < δ.

Or, we could use Sequential Criterion. Let limn→∞ xn = 1. By Limit Theorem limn→∞(x2n −
xn + 1) = 1 and limn→∞(xn + 1) = 2. Therefore,

lim
n→∞

x2n − xn + 1

xn + 1
=

limn→∞(x2n − xn + 1)

limx→∞(xn + 1)
=

1

2
.

(12d). We claim that limx→0 sin(1/x
2) does not exist. Take the sequence xn =

√
1/(2nπ) and

yn =
√

1/(2nπ + π/2), n ≥ 1. Both sequences tend to 0 as n → ∞. As limn→∞ sin(1/x2n) = 0
and limn→∞ sin(1/y2n) = 1, they have different limit. We conclude that the limit of sin(1/x2) as
x → 0 does not exist.

(15). (a) We want to show limx→0 f(x) = 0 where f is the function that is equal to x at rational
x and 0 at irrational x. The desired conclusion follows from the observation |f(x)| ≤ |x| and
limx→0 |x| = 0 and the Squeeze Theorem.

(b) f has no limit at x = c ̸= 0. Let xn → c be a sequence of rational numbers. Clearly,
limn→∞ f(xn) = limn→∞ xn = c. But, take yn → c be a sequence of irrational numbers, then
f(yn) = 0, so limn→∞ f(yn) = 0. From Sequential Criterion we draw the desired conclusion.

Section 4.2

(1b). Since the limit is taken among positive x only, this should be viewed as a right limit (see
below). By Limit Theorem,

lim
x→1+

x2 + 2

x2 − 2
=

limx→1+(x
2 + 2)

limx→1+(x
2 − 2)

=
3

−1
= −3.

Supplementary Problems

1. An infinite series
∑

n xn is called absolutely convergent if
∑

n |xn| is convergent. Show
that an absolutely convergent infinite series is convergent but the convergence of

∑
n xn

does not necessarily imply the convergence of
∑

n |xn|.
Solution. By Cauchy Convergence Criterion, when

∑
|xn| is convergent, for each ε > 0,

there is some n0 such that

n∑
k=m+1

|xk| < ε, ∀n,m ≥ n0.

But then by the triangle inequality it implies∣∣∣∣∣
n∑

k=m+1

xk

∣∣∣∣∣ ≤
n∑

k=m+1

|xk| < ε, ∀n,m ≥ n0 ,

in other words, the sequence of partial sums for
∑

xn forms a Cauchy sequence and hence
is convergent.

The series
∑∞

n=1(−1)n+1/n is convergent but
∑∞

n=1 1/n is divergent.

2. Suppose that for a polynomial p and c ∈ R, prove by the Limit Theorem (see next page)
that limx→c p(x) = p(c).
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Solution. Using limx→c x = c for all c, the product rule tells us that limx→c x
k =

(limx→c x)(limx→c x) · · · (limx→c x) = ck (k-times product). Hence

lim
x→c

p(x) = lim
x→c

(a0 + a1x+ · · ·+ anx
n)

= a0 lim
x→c

1 + a1 lim
x→c

x+ · · ·+ an lim
x→c

xn

= a0 + a1c+ · · ·+ anc
n

= p(c) .

3. Let f be defined on (a, b) possibly except x0 ∈ (a, b). Show that limx→x0 |f(x)| = |L|
whenever limx→x0 f(x) = L.

Solution. It follows immediately from the triangle inequality ||f(x)| − |L|| ≤ |f(x)− L| .

4. Let f be defined on (a, b) possibly except x0 ∈ (a, b). Suppose that limx→x0 f(x) = L for
some L. Show that limx→x0

√
f(x) =

√
L provided f ≥ 0 on (a, b). Suggestion: Consider

L > 0 and L = 0 separately.

Solution. First, assume L > 0. Given ε = L/2 > 0, there is some δ1 such that |f(x)−L| ≤
L/2 for 0 < |x− x0| < δ1. In particular, it implies that f(x) ≥ L/2 for 0 < |x− x0| < δ1.
Now,

|
√

f(x)− L1/2| = |f(x)− L|√
f(x) + L1/2

≤ 1

(L/2)1/2 + L1/2
× |f(x)− L| ,

for 0 < |x−x0| < δ1. For ε > 0, there is δ2 such that |f(x)−L| < ε× [(L/2)1/2 +L1/2] for
x, 0 < |x− x0| < δ2. If we take δ = min{δ1, δ2}, then

|
√

f(x)− L1/2| < 1

(L/2)1/2 + L1/2
× |f(x)− L| < ε , ∀x, 0 < |x− x0| < δ,

done.

Next, L = 0. Given ε > 0, there is some δ such that |f(x)| < ε2 for all x, 0 < |x− x0| < δ.
It follows that |

√
f(x)− 0| =

√
f(x) < ε for x, 0 < |x− x0| < δ, done.


